REGIONE PIEMONTE PROVINCIA DEL VERBANO CUSIO OSSOLA

COMUNE DI VIGNONE

Progetto Esecutivo

AMPLIAMENTO PARCHEGGIO PUBBLICO CON MESSA IN SICUREZZA VERSANTE TRAMITE FORMAZIONE DI MURO A SCOGLIERA

RELAZIONE DI CALCOLO

Data: Aprile 2019

Aggiornamenti: Elaborato: RC

COMMITTENTE: Comune di Vignone

Piazzale Pertini, 2 28819 VIGNONE (VB)

PROGETTISTI:

Dott. Ing. Andrea Isoli

Corso Cobianchi nº 33 - 28921 Verbania (VB) Tel./Fax 0323.515969 - e-mail: andiso70@yahoo.it P.IVA 01712350030

Albo degli Ingegneri Provincia del V.C.O. n.212

Dott. Ing ANDREA SOLI ALBO IN SEGNERI PROV. VCO N° 212

Dott. Geol. Massimiliano Coretta

Corso Cobianchi n° 33 - 28921 Verbania (VB) Tel./Fax 0323.515969 - e-mail: maxcoretta@tiscali.it P.IVA 01949270035

Albo dei Geologi della Regione Piemonte n.599

RELAZIONE TECNICO-STRUTTURALE

PREMESSA

Per conto della committenza è stata eseguita l'analisi di stabilità di un muro di sostegno in blocchi da scogliera di altezza variabile, sito nel Comune di Vignone.

Oggetto della presente relazione è il dimensionamento e la verifica del muro di sostegno relativo al progetto:

AMPLIAMENTO PARCHEGGIO PUBBLICO CON MESSA IN SICUREZZA VERSATE TRAMITE FORMAZIONE DI MURO A SCOGLIERA

La caratterizzazione geologico-geotecnica dei terreni è stata effettuata dai consulenti geologi ed utilizzata ai fini della modellazione strutturale

Da un punto di vista geotecnico si assume la seguente stratigrafia caratterizzata dai seguenti parametri di riferimento:

Pavimentazione in asfalto - 0,80 m:

- angolo di attrito pari a 38°
- peso di volume del terreno 1800 kg/m³
- assenza di coesione

Riempimento – 2,8/3 m:

- angolo di attrito pari a 31°
- peso di volume del terreno 1850 kg/m³
- assenza di coesione

Terreno naturale:

- angolo di attrito pari a 33°
- peso di volume del terreno 1850 kg/m³
- assenza di coesione

Il muro si estende in modo più o meno lineare per circa 42 m e con altezza fuori terra variabile. A favore di sicurezza è stata considerata la sezione di altezza maggiore ai fini del dimensionamento.

Le verifiche di equilibrio e di interazione con il terreno sono invece riportate, nel proseguo della relazione con i relativi dati di input.

Le verifiche previste dalla vigente normativa sono state effettuate mediante apposito programma di calcolo automatico Max 14 prodotto dalla ditta AZTEC srl.

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018)

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione e verifica in diverse sezioni al ribaltamento, allo scorrimento ed allo schiacciamento.

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg(k_h /(1± k_v)) essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h . In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ.

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi. Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r . Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r > 1.0$.

Deve quindi essere verificata la sequente disequaglianza

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terrenofondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q >=1.0 Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_v d_v i_v$$

In questa espressione

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$A=e^{\pi\,tg\,\phi}$$

$$N_q = A tg^2 (45^{\circ} + \phi/2)$$

$$N_c = (N_q - 1) \operatorname{ctg} \phi$$

$$N_{\gamma} = (N_{q} - 1) \text{ tg } (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45^\circ + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$d_q = 1 + 0.2 \frac{D}{----} \sqrt{K_p}$$

$$d_q = d_\gamma = 1$$

per
$$\phi = 0$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con ϕ l'angolo d'attrito del terreno di posa abbiamo:

$$i_c = i_q = (1 - \theta^{\circ}/90)^2$$

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{\phi^{\circ}})^2$$

per
$$\phi > 0$$

$$i_{\gamma} = 0$$

per
$$\phi = 0$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_a

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_o>=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i} \left(\frac{c_{i}b_{i} + (W_{i} - u_{i}b_{i})tg\phi_{i}}{m} \right)}{\sum_{i}W_{i}sin\alpha_{i}}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{n}) \cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

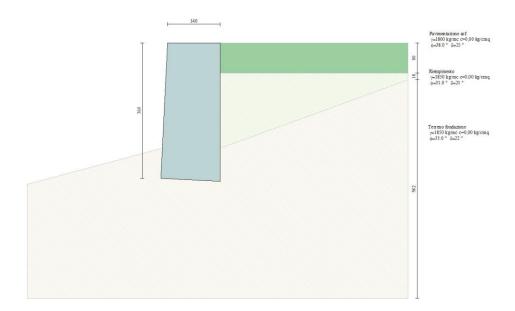
Normativa

N.T.C. 2018

Simbo	logia	adottata
SILLIDO	Uyla	auviiaia

Coefficiente parziale sfavorevole sulle azioni permanenti γGsfav Coefficiente parziale stavorevole sulle azioni permanenti
Coefficiente parziale favorevole sulle azioni permanenti
Coefficiente parziale stavorevole sulle azioni variabili
Coefficiente parziale favorevole sulle azioni variabili
Coefficiente parziale di riduzione dell'angolo di attrito drenato
Coefficiente parziale di riduzione della coesione drenata γGfav γQsfav γQfav γ_{tanφ'} γc Coefficiente parziale di riduzione della coesione non drenata
Coefficiente parziale di riduzione della coesione non drenata
Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γcu

Coefficienti di partecipazione combinazioni statiche


Coefficienti parziali per le a	zioni o per l'effetto delle a	zioni:									
Carichi	Effetto		A1	A2	EQU	HYD					
Permanenti	Favorevole	γGfav	1,00	1,00	1,00	0,90					
Permanenti	Sfavorevole	γGsfav	1,30	1,00	1,30	1,10					
Variabili	Favorevole	γQfav	0,00	0,00	0,00	0,00					
Variabili	Sfavorevole	γ Qsfav	1,50	1,30	1,50	1,50					
Coefficienti parziali per i pa	rametri geotecnici del terr	eno:									
Parametri			M1	M2	M2	M1					
Tangente dell'angolo di attr	ito	$\gamma_{tan\phi'}$	1,00	1,25	1,25	1,00					
Coesione efficace		γ _{c'}	1,00	1,25	1,25	1,00					
Resistenza non drenata		γcu	1,00	1,40	1,40	1,00					
Resistenza a compressione	e uniassiale	γqu	1,00	1,60	1,60	1,00					
Peso dell'unità di volume		γ_{γ}	1,00	1,00	1,00	1,00					
Coefficienti di partecipaz	Coefficienti di partecipazione combinazioni sismiche										
Coefficienti parziali per le a	zioni o per l'effetto delle a	zioni:									
Carichi	Effetto		A1	A2	EQU	HYD					
Permanenti	Favorevole	γGfav	1,00	1,00	1,00	0,90					
Permanenti	Sfavorevole	γGsfav	1,00	1,00	1,00	1,10					
Variabili	Favorevole	γQfav	0,00	0,00	0,00	0,00					
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00	1,00	1,50					
Coefficienti parziali per i pa	rametri geotecnici del terr	eno:									
Parametri	<u> </u>		M1	M2	M2	M1					
Tangente dell'angolo di attr	γ _{tanφ'}	1,00	1,00	1,00	1,00						
Coesione efficace		γ _{c'}	1,00	1,00	1,00	1,00					
Resistenza non drenata		γcu	1,00	1,00	1,00	1,00					
Resistenza a compressione	e uniassiale	γqu	1,00	1,00	1,00	1,00					
Peso dell'unità di volume		γ_{γ}	1,00	1,00	1,00	1,00					

FONDAZIONE SUPERFICIALE Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica		Coefficienti parziali	
	R1	R2	R3
Capacità portante della fondazione	1,00	1,00	1,40
Scorrimento	1,00	1,00	1,10
Resistenza del terreno a valle	1,00	1,00	1,40
Stabilità globale		1,10	

Geometria muro e fondazione

Descrizione	Muro a gravità in pietrame
Altezza del paramento	3,60 [m]
Spessore in sommità	1,40 [m]
Spessore all'attacco con la fondazione	1,58 [m]
Inclinazione paramento esterno	2,86 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	10,00 [m]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle	0,00 [m]
Lunghezza mensola fondazione di monte	0,00 [m]
Lunghezza totale fondazione	1,58 [m]
Inclinazione piano di posa della fondazione	2,86 [°]
Spessore fondazione	0,00 [m]
Spessore magrone	0,00 [m]

Materiali utilizzati per la struttura

Pietrame

Peso specifico 2600,0 [kg/mc] 30,0 [kg/cmq] Tensione ammissibile a compressione σ_c Angolo di attrito interno ϕ_p 45,00 [°] Resistenza a taglio τ_p 0,0 [kg/cmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

Y ascissa del punto espressa in [m] Y ordinata del punto espressa in [m] A inclinazione del tratto espressa in [°]

Ν 5.00 0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 15,00 0,80 Altezza del rinterro rispetto all'attacco fondaz.valle-paramento [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kg/mc] Peso di volume saturo del terreno espresso in [kg/mc]

Angolo d'attrito interno espresso in [°] Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kg/cmq] Adesione terra-muro espressa in [kg/cmq]

Descrizione Riempimento 1850 2000 31.00 20.67

0,000 1850 2000 Terreno fondazione 33.00 22.00 Pavimentazione asf. 1800 1800 38.00 25.33 0,000

0,000

0,000

0,000

0,000

Stratigrafia

Simbologia adottata

Indice dello strato Spessore dello strato espresso in [m] N H

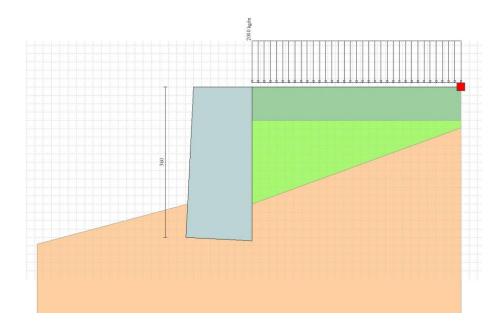
a Kw

Inclinazione espressa in [°]
Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta Terreno dello strato Terreno

Nr. н Terreno Ks Kw 0,00 0,80 0,00 0,00 Pavimentazione asf. 2,00 20,00 1,10 0,00 Riempimento 4,00 Terreno fondazione 0,00 1,48 0,00

Condizioni di carico


Simbologia e convenzioni di segno adottate
Carichi verticali positivi verso il basso.
Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

X Ascissa del punto di applicazione del carico concentrato espressa in [kg]
F_x Componente orizzontale del carico concentrato espressa in [kg]
M Componente verticale del carico concentrato espressa in [kg]
M Momento espresso in [kgm]
X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
X_{i'} Ascissa del punto finale del carico ripartito espressa in [m]
Q_{i'} Intensità del carico per x=X_i espressa in [kg/m]
Q_{i'} Intensità del carico per x=X_{i'} espressa in [kg/m]
D/C Tipo carico: D=distribuito C=concentrato

 $\begin{array}{cccc} \underline{\text{Condizione n° 1 (Carico veicolare)}} \\ D & \text{Profilo} & \textbf{X}_{i}\text{=}0.00 \end{array}$

 $Q_i = 2000,00$ $Q_f = 2000,00$ $X_{f}=5,00$

Descrizione combinazioni di carico

Simbologia adottata				
 F/S Effetto dell'azione (FAV: Favorevole, SF γ Coefficiente di partecipazione della con 				
Ψ Coefficiente di combinazione della cond	lizione			
Combinazione nº 1 - Caso A1-M1 (STR)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro Peso proprio terrapieno	FAV FAV	1,00 1,00	1.00 1.00	1,00 1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Combinations no 2 Coss FOLL(SLLI)				
Combinazione n° 2 - Caso EQU (SLU)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV SFAV	1,00	1.00 1.00	1,00
Spinta terreno	SIAV	1,30	1.00	1,30
Combinazione nº 3 - Caso A2-M2 (GEC				
Peso proprio muro	S/F SFAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 4 - Caso A1-M1 (STR)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV FAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Carico veicolare	SFAV	1.50	1.00	1.50
Combinazione n° 5 - Caso EQU (SLU)				
Combinazione II e Caso E QO (CEO)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	FAV SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Carico veicolare	SFAV	1.50	1.00	1.50
Combinazione nº 6 Cose A2 M2 (CEC	CTAD)			
Combinazione n° 6 - Caso A2-M2 (GEC	<u>S/F</u>	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Carico veicolare	SFAV	1.30	1.00	1.30
Occabinations at 7 Occas A4 M4 (OTD) O' \/			
Combinazione n° 7 - Caso A1-M1 (STR) - Sisma Vert. po S/F	ositivo γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione nº 8 - Caso A1-M1 (STR		<u>egativo</u>		
Peso proprio muro	S/F SFAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio francio Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 9 - Caso EQU (SLU) -	Sisma Vert nos	itivo		
Germaniazione in Graduata (GEG)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	FAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
·		·		•
Combinazione n° 10 - Caso EQU (SLU)	- Sisma Vert. ne S/F		Ψ	γ*Ψ
Peso proprio muro	FAV	γ 1,00	1.00	γ · Ψ 1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione nº 11 - Caso A2-M2 (GE	O-STAB) - Sisma	Vert. positivo		
Dogo proprio muro	S/F	γ 1.00	Ψ	γ*Ψ 1.00
Peso proprio muro Peso proprio terrapieno	SFAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Spinta terreno	SFAV	1,00	1.00	1,00

Combinazione nº 12 - Caso A2-M2 (GE	O-STAB) - Sisma	a Vert. negativo									
	S/F	γ	Ψ	γ*Ψ							
Peso proprio muro	SFAV	1,00	1.00	1,00							
Peso proprio terrapieno	SFAV	1,00	1.00	1,00							
Spinta terreno	SFAV	1,00	1.00	1,00							
Combinazione n° 13 - Caso A1-M1 (ST	Combinazione nº 13 - Caso A1-M1 (STR) - Sisma Vert. positivo										
	S/F	γ	Ψ	γ*Ψ							
Peso proprio muro	FAV	1,00	1.00	1,00							
Peso proprio terrapieno	FAV	1,00	1.00	1,00							
Spinta terreno	SFAV	1,00	1.00	1,00							
Combinazione nº 14 - Quasi Permanen	te (SLE)										
	S/F	γ	Ψ	γ*Ψ							
Peso proprio muro		1,00	1.00	1,00							
Peso proprio terrapieno		1,00	1.00	1,00							
Spinta terreno		1,00	1.00	1,00							
Carico veicolare	SFAV	1.00	0.60	0.60							
0 11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1											
Combinazione n° 15 - Frequente (SLE)											
	S/F	γ	Ψ	γ*Ψ							
Peso proprio muro		1,00	1.00	1,00							
Peso proprio terrapieno		1,00	1.00	1,00							
Spinta terreno		1,00	1.00	1,00							
Carico veicolare	SFAV	1.00	0.70	0.70							
Combinazione n° 16 - Rara (SLE)											
	S/F	γ	Ψ	γ*Ψ							
Peso proprio muro		1,00	1.00	1,00							
Peso proprio terrapieno		1,00	1.00	1,00							
Spinta terreno		1,00	1.00	1,00							
Carico veicolare	SFAV	1.00	1.00	1.00							

Impostazioni di analisi

<u>Calcolo della portanza</u> metodo di Meyerhof

Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione
Tipo Tipo combinazione sismica
CSsco Coeff. di sicurezza allo scorrimento
CSolim Coeff. di sicurezza a carico limite
CSSTAB Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	A1-M1 - [1]		1,96		3,77	
2	EQU - [1]			3,05		
3	STAB - [1]		<u></u>		<u></u>	1,29
4	A1-M1 - [2]		1,17		1,54	
5	EQU - [2]			1,72		
6	STAB - [2]					1,11
7	A1-M1 - [3]	Orizzontale + Verticale positivo	2,08		3,82	
8	A1-M1 - [3]	Orizzontale + Verticale negativo	2,06		3,91	
9	EQU - [3]	Orizzontale + Verticale positivo		2,70		
10	EQU - [3]	Orizzontale + Verticale negativo		2,57		
11	STAB - [3]	Orizzontale + Verticale positivo				1,53
12	STAB - [3]	Orizzontale + Verticale negativo				1,53
13	A1-M1 - [4]	Orizzontale + Verticale positivo	2,08		3,82	
14	SLEQ - [1]		1,89		3,41	
15	SLEF - [1]		1,80		3,21	
16	SLER - [1]		1,59		2,69	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte)
Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto
Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

metodo di Culmann Calcolo della spinta Calcolo del carico limite metodo di Meyerhof Calcolo della stabilità globale metodo di Bishop Calcolo della spinta in condizioni di Spinta attiva

<u>Sisma</u>

Identificazione del sito

Latitudine Longitudine Comune Provincia Regione

Punti di interpolazione del reticolo

Tipo di opera

Tipo di costruzione Vita nominale Classe d'uso Vita di riferimento

Combinazioni SLU

Accelerazione al suolo ag Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

Accelerazione al suolo ag Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (βm) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)

Forma diagramma incremento sismico

Partecipazione spinta passiva (percento) Lunghezza del muro

Peso muro Baricentro del muro

Superficie di spinta

Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta

Inclinazione superficie di spinta(rispetto alla verticale)

COMBINAZIONE nº 4

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica

45.962204 8.564852 Vignone

Verbano-Cusio-Ossola

Piemonte

9810 - 10032 - 10033 - 9811

Opera ordinaria

50 anni

II - Normali affollamenti e industrie non pericolose

50 anni

0.44 [m/s^2] 1.60 1.20 0.38 0.50

 $k_h = (a_g/g^*\beta_m^*St^*S) = 3.26$ $k_v = 0.50 * k_h = 1.63$

0.20 [m/s^2] 1.60 1.20 0.47 0.50

 $k_h=(a_g/g^*\beta_m^*St^*S)=1.84$ $k_v=0.50^*k_h=0.92$

Stessa forma diagramma statico

0,0

10,00 [m]

14108,53 [kg] X=-0,74 Y=-1,86

X = 0.00 Y = -3.68X = 0.00 Y = 0.003.68 [m] 0,00 [°]

7285,49 6774,75

Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	2679,76 X = 0,00 21,58 56,76	[kg] [m] [°] [°]	Y = -2,23	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	0.00 X = 0.00	[kg] [m]	Y = 0,00	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	6774,75 16788,29 17105,41 5928,65 0,40 1,18 18103,70 19,12 6807,97 26403,76	[kg] [kg] [kg] [kg] [m] [kg] [°] [kgm] [kg]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	1,18 2,9018 0,0000	[m] [kg/cmq] [kg/cmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 38.64$	$N_q = 26.09$	$N_{\gamma} = 26.17$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,62$	$i_q = 0.62$	$i_{y} = 0.18$
Fattori profondità	$d_c = 1,19$	$d_{q} = 1,09$	$d_{y} = 1,09$
I coefficienti N' tengono conto dei fatto	ori di forma, profondità, inclinazione	carico, inclinazione piano di posa	, inclinazione pendio.
	$N'_{c} = 28.43$	$N'_{q} = 17.69$	$N'_{\gamma} = 5.06$

COEFFICIENTI DI SICUREZZA 1.17 Coefficiente di sicurezza a scorrimento 1.54 Coefficiente di sicurezza a carico ultimo

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 4
L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro
Le verifiche sono effettuate assumendo una base della sezione B=100 cm
H altezza della sezione espressa in [cm]
N sforzo normale [kg]
M momento flettente [kgm]
T taglio [kg]
e eccentricità dello sforzo rispetto al baricentro [cm]
offin tensione di compressione massima nel pietrame in [kg/cmq]

σ_p Ms Mr Cs Cr

altezza della sezione espressa in [cm]
sforzo normale [kg]
momento flettente [kgm]
taglio [kg]
eccentricità dello sforzo rispetto al baricentro [cm]
tensione di compressione massima nel pietrame in [kg/cmq]
momento stabilizzante [kgm]
momento ribaltante [kgm]
coeff. di sicurezza allo scorrimento
coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	М	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	140,00	0	0	0		0,00			0,00	
2	0,18	140,92	672	9	115		0,05			5,82	
3	0,37	141,84	1348	37	247		0,11			5,46	
4	0,55	142,76	2028	88	394		0,17			5,15	
5	0,74	143,68	2713	164	555		0,24			4,89	
6	0,92	144,60	3403	270	763		0,31			4,46	
7	1,10	145,52	4097	417	1028		0,40			3,98	
8	1,29	146,44	4795	612	1315		0,50			3,65	
9	1,47	147,36	5497	858	1623		0,61			3,39	
10	1,66	148,28	6204	1160	1953		0,73			3,18	
11	1,84	149,20	6915	1521	2305		0,87			3,00	
12	2,02	150,12	7631	1945	2679		1,03			2,85	
13	2,21	151,04	8351	2437	3074		1,20			2,72	
14	2,39	151,96	9076	3001	3492		1,41			2,60	
15	2,58	152,88	9805	3640	3931		1,66			2,49	
16	2,76	153,80	10538	4358	4390		1,98			2,40	
17	2,94	154,72	11276	5157	4840		2,38			2,33	

18 19 20	3,13 3,31 3,49	155,64 156,56 157,47	12018 12764 13515	6035 6995 8039	5292 5764 6257	 2,90 3,62 4,68	 	 	2,27 2,21 2,16	
<u>COM</u>	BINAZIO	NE n° 5								
Comp Comp Punto Inclin	ponente o ponente v o d'applica az. della	erticale della azione della spinta rispet	ella spinta sta a spinta statio spinta to alla norma i in condizion	a le alla supe	rficie	7285,49 6774,75 2679,76 X = 0,00 21,58 56,76	[kg] [kg] [kg] [m] [°]	Y =	-2,23	[m]
			sulla fondazio ante sulla fon			0.00 X = 0.00	[kg] [m]	Y =	0,00	[m]
Risul Mom Mom Sforz Sforz Ecce Lung Risul Inclin	tante dei tante dei tante dei ento ribal ento stab co normale to tangen; ntricità ris hezza for tante in foazione dei	carichi applii tante rispetto ilizzante risp e sul piano o ziale sul piar spetto al bari ndazione rea pndazione ella risultante	cati in dir. oriz cati in dir. ver callo spigolo etto allo spig li posa della f no di posa de centro della f gente e (rispetto alla ntro della fon	ticale a valle olo a valle ondazione lla fondazion ondazione a normale)	ne	6774,75 16788,29 9315,25 16037,40 17105,41 5928,65 0,40 1,18 18103,70 19,12 6807,97	[kg] [kgm] [kgm] [kg] [kg] [m] [m] [kg] [kg]			
COE	FFICIENT	ΓΙ DI SICURI	EZZA			. ==				

1.72

Sollecitazioni nel muro e verifica delle sezioni

Coefficiente di sicurezza a ribaltamento

Combinazione n° 5
L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro
Le verifiche sono effettuate assumendo una base della sezione B=100 cm
H altezza della sezione espressa in [cm]
N sforzo normale [kg]
M momento flettente [kgm]
T taglio [kg]
e eccentricità dello sforzo rispetto al baricentro [cm]
σ_p tensione di compressione massima nel pietrame in [kg/cmq]
Ms momento stabilizzante [kgm]
Mr momento ribaltante [kgm]
Cs coeff. di sicurezza allo scorrimento
Cr coeff. di sicurezza al ribaltamento

Nr.	Υ	Н	N	M	Т	е	σ_{p}	Ms	Mr	Cs	Cr
1	0,00	140,00				0,00		0	0		0,00
2	0,18	140,92				1,31		552	10		53,22
3	0,37	141,84				2,76		1128	43		25,97
4	0,55	142,76				4,34		1728	102		16,93
5	0,74	143,68				6,05		2352	189		12,43
6	0,92	144,60				7,93		3001	309		9,72
7	1,10	145,52				10,18		3687	473		7,79
8	1,29	146,44				12,76		4400	688		6,39
9	1,47	147,36				15,61		5140	958		5,36
10	1,66	148,28				18,69		5907	1287		4,59
11	1,84	149,20				21,99		6702	1678		3,99
12	2,02	150,12				25,49		7524	2136		3,52
13	2,21	151,04				29,18		8375	2665		3,14
14	2,39	151,96				33,06		9254	3269		2,83
15	2,58	152,88				37,12		10163	3951		2,57
16	2,76	153,80				41,35		11099	4716		2,35
17	2,94	154,72				45,74		12061	5565		2,17
18	3,13	155,64				50,22		13046	6497		2,01
19	3,31	156,56				54,80		14060	7513		1,87
20	3,49	157,47				59,48		15105	8619		1,75

Stabilità globale muro + terreno

Combinazione nº 6

Le ascisse X sono considerate positive verso monte
Le ordinate Y sono considerate positive verso l'alto
Origine in testa al muro (spigolo contro terra)
W peso della striscia espresso in [kg]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [kg/cmq] contributo tiranti espresso in [kg]

Ctn, Ctt

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -2,66Y[m] = 0.89

Raggio del cerchio R[m]= 5,28

Ascissa a valle del cerchio Xi[m] = -5,16Xs[m] = 2,56Ascissa a monte del cerchio Larghezza della striscia dx[m] = 0.31Coefficiente di sicurezza C = 1.11Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u	Ctn	Ctt
1	1100,19	73.84	1056,73	1,11	30.42	0,00	0,00		
2	1584,71	64.43	1429,46	0,72	25.67	0,00	0,00		
3	1907,36	57.43	1607,35	0,57	25.67	0,00	0,00		
4	2156,98	51.61	1690,73	0,50	27.39	0,00	0,00		
5	2361,38	46.48	1712,32	0,45	27.45	0,00	0,00		
6	2533,26	41.80	1688,43	0,41	27.45	0,00	0,00		
7	2679,78	37.44	1629,07	0,39	27.45	0,00	0,00		
8	2805,40	33.32	1541,13	0,37	27.45	0,00	0,00		
9	2956,13	29.39	1450,85	0,35	27.45	0,00	0,00		
10	3061,72	25.61	1323,44	0,34	27.45	0,00	0,00		
11	3135,59	21.95	1171,83	0,33	27.45	0,00	0,00		
12	3196,54	18.37	1007,53	0,33	27.45	0,00	0,00		
13	3162,69	14.87	811,76	0,32	27.45	0,00	0,00		
14	1082,13	11.43	214,42	0,32	27.45	0,00	0,00		
15	823,06	8.03	114,92	0,31	27.45	0,00	0,00		
16	795,38	4.65	64,51	0,31	27.45	0,00	0,00		
17	757,25	1.29	17,11	0,31	27.45	0,00	0,00		
18	708,76	-2.06	-25,46	0,31	27.45	0,00	0,00		
19	649,91	-5.42	-61,38	0,31	27.45	0,00	0,00		
20	580,56	-8.80	-88,80	0,31	27.45	0,00	0,00		
21	500,49	-12.21	-105,84	0,32	27.45	0,00	0,00		
22	409,33	-15.66	-110,52	0,32	25.67	0,00	0,00		
23	306,56	-19.18	-100,71	0,33	25.67	0,00	0,00		
24	191,49	-22.77	-74,11	0,34	25.67	0,00	0,00		
25	63,18	-26.46	-28,15	0,35	25.67	0,00	0,00		

 $\Sigma W_i = 39509,84 \text{ [kg]}$ Σ W_isin α _i= 17936,62 [kg] $\Sigma W_i tan \phi_i = 20424,45 \text{ [kg]}$ $\Sigma tan\alpha_i tan\varphi_i \text{= 6.48}$

Inviluppo sollecitazioni nel muro e verifica delle sezioni

Le verifiche sono effettuate assumento una base della sezione B=100 cm H altezza della sezione espressa in [cm] N sforzo normale Ikol L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

sforzo normale [kg] momento flettente [kgm] M T e

taglio [kg] eccentricità dello sforzo rispetto al baricentro [cm]

tensione di compressione massima nel pietrame in [kg/cmq] momento stabilizzante [kgm] $_{\text{Ms}}^{\sigma_{p}}$

momento ribaltante [kgm] coeff. di sicurezza allo scorrimento

coeff. di sicurezza al ribaltamento

Inviluppo combinazioni SLU										
Nr.	Υ	н	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax		
1	0,00	140,00	0	0	0	0	0	0		
2	0,18	140,92	672	672	-1	9	8	115		
3	0,37	141,84	1348	1348	-2	37	31	247		
4	0,55	142,76	2028	2028	-1	88	70	394		
5	0,74	143,68	2713	2713	6	164	123	555		
6	0,92	144,60	3403	3403	21	270	204	763		
7	1,10	145,52	4097	4097	51	417	322	1028		
8	1,29	146,44	4795	4795	103	612	460	1315		
9	1,47	147,36	5497	5497	178	858	621	1623		
10	1,66	148,28	6204	6204	282	1160	804	1953		
11	1,84	149,20	6915	6915	418	1521	1008	2305		
12	2,02	150,12	7631	7631	590	1945	1234	2679		
13	2,21	151,04	8351	8351	803	2437	1476	3074		
14	2,39	151,96	9076	9076	1060	3001	1718	3492		
15	2,58	152,88	9805	9805	1365	3640	1979	3931		
16	2,76	153,80	10538	10538	1723	4358	2255	4390		
17	2,94	154,72	11276	11276	2134	5157	2533	4840		
18	3,13	155,64	12018	12018	2600	6035	2817	5292		
19	3,31	156,56	12764	12764	3115	6995	3117	5764		
20	3,49	157,47	13515	13515	3657	8039	3434	6257		
21	3,68	158,39	14270	14270	4255	9173	3765	6766		
Inviluppo combinazioni SLU										
Nr.	Υ	н	е	σ_{p}	Ms	Mr	Cs	Cr		
1	0,00	140,00	0.00	0,00	0	0	0,00	0,00		
2	0,18	140,92	1,52	0,05	552	10	5,82	53,22		
3	0,37	141,84	3,17	0,11	1128	43	5,46	25,97		
4	0,55	142,76	4,96	0,17	1728	102	5,15	16,93		
5	0,74	143,68	6,87	0,24	2352	189	4,89	12,43		
6	0,92	144,60	8,95	0,31	3001	309	4,46	9,72		
7	1,10	145,52	11,38	0,40	3687	473	3,98	7,79		
8	1,29	146,44	14,12	0,50	4400	688	3,65	6,39		
9	1,47	147,36	17,12	0,61	5140	958	3,39	5,36		
10	1,66	148,28	20,34	0,73	5907	1287	3,18	4,59		
11	1,84	149,20	23,77	0,87	6702	1678	3,00	3,99		
12	2,02	150,12	27,39	1,03	7524	2136	2,85	3,52		
13	2,21	151,04	31,20	1,20	8375	2665	2,72	3,14		
14	2,39	151,96	35,18	1,41	9254	3269	2,60	2,83		
15	2,58	152,88	39,34	1,66	10163	3951	2,49	2,57		
16	2,76	153,80	43,66	1,98	11099	4716	2,40	2,35		
17	2,94	154,72	48,12	2,38	12061	5565	2,33	2,17		
18	3,13	155,64	52,69	2,90	13046	6497	2,27	2,01		
19	3,31	156,56	57,35	3,62	14060	7513	2,21	1,87		
20	3,49	157,47	62,12	4,68	15105	8619	2,16	1,75		